Security Issues in Resource-limited Sensor Networks

Thilo Sauter
Albert Treytl
Wireless Sensor Network Vision

Field-level backbone network

Access Point

Company-level network

Gateway

High-level company functions

Company-level network

Field-level backbone network

Access Point

Wired field-level nodes
Content – Take Home Messages

- Security needs proven methods
 - But sensor networks are different from IT networks

- Security needs time
 - But computing resources are limited

- Security needs extra communication
 - But bandwidth is often limited

- Outlook
 - Security beyond classical protection
Basic Security Considerations

- **Kerckhoff principle**
 - The security of a system should only rely on the secrecy of the used credentials (keys)
 - An algorithm can only be assumed to be save when it is publicly reviewed
 - No security by obscurity!
 - Security tokens can/should be used to store keys and execute crypto algorithms

- **Claude Shannon: “The enemy knows the system.”**
 - Attackers are using powerful computers, not raspberry pies

- **Use standard cryptography!**
 - No shorter keys
 - No other, weaker algorithms
Security vs. Interoperability

- Sensor networks require interoperability
 - Automatic configuration (ad-hoc networking)
 - Plug and Play/Participate/Produce
 - Extensibility of installations
 - Open system

- Security goals are contradicting
 - “What is not explicitly allowed is forbidden”
 - Access restriction to permitted entities
 - No intrusion via attachment of additional external devices
 - Closed system
The Real (W)SN World

- Nodes are not always under the control of the operator
 - Worst case: building automation, energy distribution
 - Easy access for potential hackers
 - Tamper-proof hardware in distributed systems is difficult

- Use of dedicated security tokens
 - Limited node resources
 - Bottleneck serial interface

- End to end security connections
 - Integration of gateways to translate between different resources/domains
Content – Take Home Messages

- Security needs proven methods
 - But sensor networks are different from IT networks

- Security needs time
 - But computing resources are limited

- Security needs extra communication
 - But bandwidth is often limited

- Outlook
 - Security beyond classical protection
Security Considerations

- Computing time needed for security algorithms is crucial
 - Especially in real-time networks
 - Transmission time is another issue (message size)

- Symmetric cryptography (shared keys)
 - Small overhead, short length for message authentication codes
 - Lightweight implementation even in small processors

- Asymmetric cryptography
 - Popular in the IT world (public key infrastructures)
 - Large messages and computing times -> no real-time capabilities

- Symmetric keys are not as bad as their reputation
Performance Analysis

- For 8051 core
 - 8 bit, 8 MHz
 - Still used in field devices
- 3-DES has smallest overhead, yet is outdated
- Asymmetric algorithms are very slow
 - In particular RSA
 - ECC has less overhead
- AES seems best suited overall

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Block size for encryption and MAC</th>
<th>Execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-DES</td>
<td>8 bytes</td>
<td>18ms</td>
</tr>
<tr>
<td>AES (128-bit key)</td>
<td>16 bytes</td>
<td>12.195ms</td>
</tr>
<tr>
<td>AES (128-bit key) CBC</td>
<td>16 bytes</td>
<td>13.536ms</td>
</tr>
<tr>
<td>AES (128-bit key) CFB</td>
<td>16 bytes</td>
<td>15.663ms</td>
</tr>
<tr>
<td>RSA</td>
<td>128 bytes</td>
<td>6.12s/155s**</td>
</tr>
<tr>
<td>ECC</td>
<td>40 bytes</td>
<td>40.5s/600s**</td>
</tr>
</tbody>
</table>

** for signature and verification, respectively

Computation Delay of IPsec Layer

- **Embedded Linux device**
 - 32 bit, 200 MHz

Center for Integrated Sensor Systems
Danube University Krems. The University for Continuing Education.
Content – Take Home Messages

- Security needs proven methods
 - But sensor networks are different from IT networks

- Security needs time
 - But computing resources are limited

- Security needs extra communication
 - But bandwidth is often limited

- Outlook
 - Security beyond classical protection
Utility Company

- Limited bandwidth
 - 30-100 kbit/s
 - 20% packet loss
- Small packet size
 - 20 to 50 byte payload
 - Up to 100 kB application data
 - Mostly only MAC, no complex encryption
- End-to-end communication
 - Strict limits for packet delay
 - Security measures critical
- Low-cost node (processor)
 - Limited resources

Customers

Power-line-based Communication

- Metering
- REMPLI Node
- Climate Control
- Switching Control
- Burglar Alarm
- REMPLI Node
Key Management

- Security does not only mean MAC and cipher overhead in the messages
- Regular key update is needed too
 - Secure distribution process!
 - Mind the network load!
- Solution: hierarchical key derivation
 - Lower-level keys are derived from higher-level keys and distributed
 - Update more frequently for lower levels
- Limited lifetime for low-level keys
 - Stored in (insecure) processor memory
 - Lowest-level keys are derived autonomously, not distributed
Content – Take Home Messages

- Security needs proven methods
 - But sensor networks are different from IT networks

- Security needs time
 - But computing resources are limited

- Security needs extra communication
 - But bandwidth is often limited

- Outlook
 - Security beyond classical protection
Location-based Security

- Nodes are moving, can we trust them?
 - Position detection is a feature of the (trusted) network infrastructure
 - Access to communication resources depends on the location

- Inverse GPS scenario
 - No need to modify client
 - Each point must be covered by multiple (≥ 3) access points

- Security benefits
 - Strengthen defense-in-depth concept by integration of physical access barriers
 - Combine the security advantages of wired systems with the flexibility of wireless systems
Conclusions and Outlook

- Sensor networks are different from classical IT networks in many ways
 - Spatial extension
 - Ad-hoc behaviour
 - Limited computing and communication resources
 - Often real-time applications
- Still we need to employ proven IT security mechanisms
 - But combined in a clever way
 - Tailored to the needs and capabilities of the system
- Further issues
 - Inspection/correlation of data
 - Statistical or model-based anomaly detection
 - Intrusion detection
Albert Treytl, Thilo Sauter
Center for Integrated Sensor Systems
Danube University Krems

www.donau-uni.ac.at/ziss
Thilo.sauter@donau-uni.ac.at